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I. INTRODUCTION 

This dissertation describes an experimental study of the effects 

of an atmospheric thermal plume on the propagation of electromagnetic 

waves over a line-of-sight radio link. The objectives of this study-

are: (1) to determine the feasibility of the use of an optical 

modeling technique to study atmospheric interactions at radio fre­

quencies and (2) to use the model in evaluating the effect of a ther­

mal plume on line-of-sight radio wave propagation paths. 

Electromagnetic waves propagating through the atmosphere suffer 

a degradation due to the interaction between the waves and the changing 

atmosphere. These effects include: refraction, scattering, and re­

flection; which result in multiple propagation paths and a highly 

variable signal level. This phenomenon is called "fading". 

For many years radio physicists and engineeers have studied 

fading and proposed mechanisms and theories to account for its charac­

teristics. There have been many experiments performed by these scien­

tists and engineers using actual communication links as the propagation 

path. Many papers have reported signal-level curves, fading frequencies, 

fading periods, and depth-of-fade measurements for particular paths and 

specific frequencies. To study other paths, in other locations, the 

equipment and personnel must be moved to the other sites to record the 

data for a period of time. A fundamental drawback of this type of ex­

perimental method is the expense involved. 
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A well-known technique, long used by antenna engineers, is the 

principle of frequency scaling. When designing a large-sized antenna 

they experienced problems in determining the antenna pattern because 

of the space required for the measurement of the far field. To get 

away from this problem, they built another antenna of the same config­

uration but of smaller size and used a higher frequency in measuring 

the pattern. Skolnik [l], using the scaling technique, scaled an 

antenna measuring 38 feet in diameter at 1800 MHz, down to 1.4 feet 

in diameter at 35 GHz. Redlien and Heinemann [2j have used 0.63 micro­

meter wavelength laser radiation to simulate a 75 wavelength diameter 

antenna at X band frequencies (8.2-12.4 GHz). They did not reduce 

the antenna by the true scaling factor but did get a good qualitative 

pattern of the antenna. In 1957 Holt and Spencer [3] used a light 

source and a scaled model of an aircraft to simulate the back scattering 

cf a radar signal from the full sized aircraft. Another experiment, 

performed by Edison [4] to study the propagation of waves in a random 

medium, used acoustic waves propagating through artificially generated 

turbulence in a water tank. By heating the bottom of the tank, con­

vection caused blobs of hot water to rise to the surface, and produced 

a fluctuation of the signal. Recently, Post, Guidry, and Rost [5]"re­

ported on the use of an earth model and a laser to simulate the propa­

gation of an electromagnetic wave over the earth's horizon. They used 

a pyrex disc with a convex spherical surface as the earth model, and 

detected the amount of energy reaching the receiver on a photographic 
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plate. Thus, the way has been opened for us to investigate the possi­

bilities of using optical simulation techniques to study radio wave 

propagation characteristics on a line-of-sight radio link in the 

troposphere. 

Recent papers on remote sensing of the atmospheric structure [6, 

7, 8] by means of an acoustic echo-sounding method have helped resolve 

features of the temperature and wind field in the lower atmosphere. This 

method has been helpful in studying thermal or convective plumes. Hall 

[6] recently reported on the detection of thermal plumes in the atmosphere 

by chis method. He remarked that: (1) the plumes were vigorous on 

sunny days; (2) wind shear produced a slope sometimes into, and some­

times with the wind; (3) the plume height increased with time starting 

in the morning and reaching a maximum shortly after noon; and (4) there 

was very little change in plume characteristics with the season. He 

also reported that the acoustic echo-sounding observations were con­

sistent with the observation made by Kaimal and Businger [9J using 

fast response thermometers and anemometers on a tower. 

Bean [8] employed an FM-CW radar at 10 cm wavelength and acoustic 

echo-sounding equipment simultaneously with in-situ measurements of 

the scattering region and found that the radar reflectivities were in 

good agreement with the reflectivities computed from the measured data. 

From his acoustic echo sounder's facsimile record, he found that there 

were some echoes due to convective plumes in the atmosphere, and he 

observed that they agree with the convective plume model of Kaimal 

and Businger. 
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From these results, it is apparent that the convective thermal 

plume is a frequently encountered phenomenon in the lower atmosphere. 

As described by Kaimal and Businger [9], the thermal plume is a ther­

mally generated atmospheric activity. It has a higher internal tem­

perature than the air outside the boundary thus having a different 

radio refractivity. The boundary, the motion of the air inside 

boundary, and the mixing and tilting of the structure can be expected 

to affect radio wave propagation if it is located in the path of the 

wave. Until now, most of the research in this area has been devoted 

to the study of the effects of the thermal plume on the back-scattering 

of the waves such as the returned radar signal and acoustic echo-

sounding signal. Very little work has been done on the effects of the 

thermal plume on the waves scattered in the forward direction. Using 

the scaling techniques mentioned earlier an experimental investigation 

can be performed in the laboratory^ The implementation of these 

scaling techniques to study the effect of a thermal plume on the pro­

pagation characteristics of a line-of-sight communication path is the 

subject of this study. 

The next part of the dissertation deals with the theory of line-

of-sight propagation. A brief explanation of the effects of various 

meteorological phenomena on radio wave propagation including the effects 

of a thermal plume is presented. Part III contains a detailed expla­

nation of the atmospheric thermal plume based on its physical structure 

and behavior as observed by Kaimal and Businger [9]. The theory of 
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optical scaling of a radio link and the thermal plume is also contained 

in part IV. Included in this section is a theoretical treatment on 

the factors to be considered in scaling the natural thermal plume the 

size of about 100 m in diameter to the size of 1.275 cm. 

The detailed explanation of the construction of the set up, and 

the procedure followed in the performance of the experiment are con­

tained in part V. In this section are shown a photograph and diagrams 

of the experimental setup and schematics of the electronics circuitry. 

The results of the experiments are tabulated in part VI. The principle 

of the Schlieren system, which plays an important role in this experi­

ment, is described in the appendix. 
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II. THEORY OF LINE-OF-SIGHT RADIO LINKS 

The transmission of radio waves over direct line-of-sight paths 

with nothing in the intervening medium should be such that the received 

field strength be equal to the theoretical value for propagation over 

an equivalent free-space path. However in the real-world situation this 

is not possible because the electromagnetic field at the receiver can 

be the result of interference between the direct ray and a reflected 

ray. Tliis interference gives rise tc reinforced field strengths when 

direct and reflected fields are in-phase, and reduced field strengths 

when they are in phase opposition [10]. Since the refractive index 

may vary from time-to-time and from point-to-point, the amplitude 

and phase of the direct and reflected rays at a given point will not 

be the same from one moment to the next and the regions of strong 

and weak field strength will shift in space. If the direct and re­

flected signals are of approximately equal amplitude and in phase 

opposition, the fading will be severe and the received signal level 

will be 10 dB or more below the normal theoretical value. There may 

be instances that the waves bend away from the receiving antenna due 

to a refracting layer; the fading may be severe in this situation too 

[11, 12]. 

If the waves propagate through a small-scale inhoraogeneous medium, 

the received signal will fluctuate with small-amplitude, short-period, 

variations. This type of fading is sometimes called scintillation of 

the signal. In between the severe fading and scintillation there are 
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low amplitude fades due to the effect of medium scale atmospheric phe­

nomena. One objective of this study is to place the atmospheric thermal 

plume in one or more of these categories. 

A narrow beam radio wave propagating through a region where a 

thermal plume occurs will be affected by the following basic inter­

actions: (1) reflection of wave at the interface of the boundary 

of the plume and the surrounding air, (2) refraction of wave within 

the plume boundary, and (3) scattering by the eddies of the plume 

mixing with outside air. The level of fading may not reach 10 dB 

below the normal level as often occurs in the case of refracting 

layer interacting with the beam. 
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III. THE NA.TURE OF AN ATMOSPHERIC THERMAL PLUME 

During the daylight hours the sun radiates energy through the 

atmosphere to the surface of the earth in the form of wide-frequency-

spectrum electromagnetic waves ranging from invisible ultraviolet 

wavelengths to the infrared wavelengths. Approximately one-half 

of the radiated energy is in the visible portion of the spectrum [13], 

The maximum radiation is found to be at a wavelength of 4743 & [14]. 

This is called short-wave solar radiation. The earth's surface, after 

absorbing the solar radiation, re-emits at a longer wave length of 

about 10,000 & back to the atmosphere. This is called long-wave 

terrestrial radiation. 

Since the earth's surface layer is not homogeneous, all portions 

of the surface do not absorb the same amount of solar energy. Some 

areas may be predominantly dry soil, other areas may be wet soil, 

water or sea, and yet other areas may be covered with vegetation, 

like the jungles. This difference in absorption causes a difference 

in the temperature of the surface, even at a separation distance of 

hundreds of feet. The air directly above the heated surface is warmed 

to different temperatures at different locations. 

From the equation of state: pCK = RT, where p is the pressure, a 

is the specific volume (o: = 1/p), R is the specific gas constant and 

T is the absolute temperature, we see that, at the surface, the par­

cels of air of differing temperatures will exhibit differences in 

specific volume or density. That is, the higher the temperature the 
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the lower the density of the particular parcel of air. Consider a 

local air parcel in hydrostatic equilibrium before it is heated. The 

air parcel remains in static equilibrium by the balancing of gravi­

tational and pressure forces; assuming no horizontal movement. Any 

temperature changes of the parcel, even as small as 1° F, will tip 

the balance of these forces. The parcel will first expand and then 

rise upward. The upward acceleration depends on the temperature 

difference between the air parcel and the surrounding air [15]. The 

upward air strea^i, confined into a cclunin of rising air, is called 

a "thermal" or a "thermal plume" or a "convective plume". This 

theory assumes that the air in the plume does not mix, or 

exchange heat with the surrounding air. External to the plume the 

pressure decreases with increasing height- As the heated air ascends, it 

will adjust its internal pressure (at sonic speed) to that of the sur­

rounding air. Thus, the pressure of the heated air is equal to the 

pressure of the surrounding air at all times. The expansion of the 

plume requires some heat input, and since the heat supplied by the 

surface ceases shortly after the air parcel leaves the surface, 

the internal energy of the air parcel is the only source of energy 

o. m L̂t.%  ̂ w w J. klc*. LAW JL J- CL ô. o o a. J. U LIV_ U. J. A. k, O U.C. HI— 

perature; thus, as the air parcel moves upward its temperature de­

creases. If the adiabatic temperature lapse rate is greater than the 

temperature lapse rate of the surrounding air, the air parcel in the 
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plume will ascend until its temperature is equal to that of the sur­

rounding air at some height. 

There are several papers (Telford [15], Priestley and Ball [17], and 

Kuo's [18] papers) proposing a theoretical basis for the thermal 

plume. Most of these papers deal with idealized cases of free con­

vection without wind shear. Recently an experimental program to 

determine the physical characteristics and the mechanisms that main­

tain the thermal plume in the earth's atmosphere was conducted by 

Kaimal and Businger [9]. This is the only paper dealing with in­

strumental measurements at this time. They reported that, in reality, 

there is considerable entrainment of air at higher levels above the 

surface, and that the plume maintains a tilt in the presence of wind 

shear by means of vertical stretching along the plume. The temperature 

lapse rate is close to the adiabatic process. From their data, the 

size of a typical plume is about 60 meters in diameter at the surface 

and about 40 meters in diameter at the height of 22.6 meters. 

Figure 3.1 shows the model of the convective plume given by 

Kaimal and Businger. The horizontal component of the velocity vector 

close to the surface is about 2.06 to 2,60 meters per second within 

the plume boundary. The plume moved slowly with the low-speed surface 

wind and still retained its identity as a column by stretching. 

If the atmosphere is stably stratified, the plume will rise and level 

off. Bending of the plume is caused by an increase of the horizontal 

wind velocity. If the horizontal wind shear with height is strong enougji, 

the plume may be broken up and lose its identity. The effect of the 
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Front 

Figure 3.1. The two-dimensional model of the convective plume (after 
Kaimal and Businger). 

wind shear is to introduce vorticity into the flow of the plume. The 

plume will contair» ~.cre cddias and the outside sir is nixeô into t^e 

flow boundary not only by entrainment but also by the vorticity of the 

shear. The result is that it becomes more turbulent and the temperature 

gradient is more severe. Figure 3.2 (a) and (b) shows the effects of 

horizontal wind on the thermal plume. 

When the thermal plume occurs in the area along the line-of-sight 

radio link or if one should move past this link, there may be some 

fluctuation of signal at the receiver due to the change of the refrac-

tivity of the propagating medium. The change of the refractivity may 

cause refraction of the beam or deviation of the beam away from its 
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(a) (b) 
A plume blown by a A plume blown by a 
small amplitude wind. strong wind shear. 

Figure 3.2. Effects of horizontal wind on the thermal plane. 

normal direction. The other expected effect is that a fluctuation 

signal energy may result from the combination of the out-of-phase 

components of the wave at the receiver. The former case is likely 

to occur when the beam propagating through the plume is narrow in 

cross-section while the later case is more likely when the beam 

cross-section is broad. 
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IV. THEORY OF OPTICAL SCALING OF THE RADIO LINK 

As mentioned in Chapter I, the frequency-scaling technique has 

been used by some researchers in studying certain electromagnetic 

wave phenomena. By using a laser as an electromagnetic source one 

can scale large-diameter antennas as small-sized antennas suitable 

for laboratory measurement- The theory behind this technique is 

that the dimensions of the antenna are scaled down by the ratio of 

the optical source wavelength to the wavelength of the actual source 

[19]. If we let S be the value of this ratio, which we will call the 

"scaling factor", then 

s = (iv.i) 
Wave 

(IV. 2) 

"here X^ave' ̂ Laser Sfave wavelength and the path 

length of the laser model and the actual path respectively. In this 

experiment, a 6328 R wavelength is used to simulate the transmitted 

-6  
wave and the scaling factor is abouc 6.328 x 10 If a 3 GKz wave is 

being simulated. The transmitter of the radio wave is simulated by 

passing the laser beam through a small aperture. The resulting beam 

will have the pattern of the Airy function, with the main lobe of 

approximately 1/8 inch in diameter at the receiver aperture. 
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The receiver of the model, which simulates the receiving antenna 

can be a photosensitive diode detector or a photomultiplier. The re­

ceiving area of the receiver simulates the aperture of the receiving 

antenna. •• With a very large value of scaling factor like this, the 

transmission path of a radio link can be shortened to a suitable 

length for the laboratory. 

The refractivity (N = (n-1) x 10^, where n is the refractive 

index) of air at microwave frequencies is dependent upon its tempera­

ture, pressure and moisture content [20]: 

while the refractivity of air at optical frequencies is dependent 

upon its temperature and pressure only [21] : 

where p is the dry air pressure, e is the partial pressure of water 

vapour and T is the absolute temperature of the air. 

The fluctuation of the received signal on a microwave radio link 

is due, mainly, to changes of moisture and temperature along the path 

whereas the fluctuation in the optical signal is caused by changes in 

the temperature alone. In either case pressure is not considered to 

be a significant contribution to short-term signal fluctuations. If 

the temperature of the air in the simulated path is controlled and 

changed in such a way that its movement is analogous to an atmos­

pheric phenomena, then the fluctuation of the received signal will 

N = ^ (P + 4810 |) (IV.3) 

N = p X 10"°. (IV,4) 
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be analogous to the signal characteristics of the radio link. By 

this means one can study the contribution of a particular atmospheric 

phenomena to the signal characteristics of a radio link. 

As pointed out in Chapter III, the occurrence of the thermal plume 

in the natural environment is sufficiently common that one can expect 

it to occur in or to move past a radio link he is planning to establish. 

A question that should be answered is whether the role of thermal plume 

is such that its effects on the radio link should be considered in the 

design process. One way to do this more easily and economically than 

conducting an investigation on an actual propagation path is to 

model a thermal plume into a laboratory-size situation. 

The scaling of the thermal plume to the model can be done in the 

following way. There are two parameters of the plume that affect the 

laser beam propagation; its size and its temperature gradients. Since 

the thermal plume has temperature higher than the surrounding air, there 

must be a temperature gradient outward in the radial direction due to 

conduction process as well as gradients caused by mixing. 

The most desirable way to model the thermal plume would be to 

scale its size down while maintaining temperature gradients equivalent 

to those of the actual thermal plume, while it would be very difficult 

to make certain that the gradients due to mixing are modeled properly, 

it is not too difficult to ensure that the radially-directed gradients 

due to thermal conduction are scaled proportionately. As a very 

simple mathematical model, let us consider a column of heated air, 
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of circular cross-section; in thermal equilibrium with its surroundings. 

We can write the heat equation for this case as [22], 

^ = 0 (IV.5) 

where T is the temperature, c is the specific heat constant, y is the 

density and k is the thermal conductance of the air. 

At steady state, that is when there is constant heat supplied to 

the cylinder of heated air, there will be no temperature changes with 

dT 
time in the plume, thus goes to zero, and 

= 0. (IV.6) 

Assuming that there is no temperature change in the vertical nor 

circumferential uirectionô; ̂  and ̂  arc zerc, and tha heat equation 
oz 50 

becomes (in a cylindrical coordinate system) 

i - 0. (IV.7) 

From the above eauation we have 

'i = =1 (IY.8) 
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where is a constant, or 

fr ' T-

A solution to the equation (IV.9) is 

T = In r + (IV.10) 

where is anotner constant. 

Let Tq be the temperature of the surrounding air at a distance R 

away from the thermal plume. Thus, 

Tq = In R + Cg (IV.11) 

The temperature at the periphery of the thermal plume is T^, so we can 

write 

T, = In a + c, (IV.12) 

where "a" is the radius of the thermal plume. The difference in tem­

perature of the thermal plume and the surrounding air is then, 

AT = c^(ln a - In R) (IV.13) 

at = c^ In a/R. (IV.14) 
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From equation (IV.14) we have 

'1 In a/R 

AT 
In R/a 

^ = _ A —&L__ 
ôr r In R/a 

(IV.15) 

Substitute into equation (IV.8), 

and from equation (IV.11), substitution of gives. 

T = To + " r'RM ' "V 18) 

Substituting c., into equation (IV.9) gives. 

(IV.19) 

By the same procedure, the temperature gradient for the model plume 

can be written as 
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where t', a', and r' are the temperature, the radius and the radial 

distance from the center of the model plume respectively. 

In order to make the temperature gradient at the periphery of 

the thermal plume and the model plume be equivalent to each other and 

to introduce the scaling factor, S, as we scale down the wavelength 

of the wave, we have 

1 ^ 
s ôr 

(IV,21) 
ôr 

or 

-1, iiT' . . 1 AT . i 
a In R/a' S In R/a a 

(IV.22) 

Solving for AT' results in 

àT' = a'in R/a' (IV.23) 

Now take the limit as R becomes infinitely large 

lim ûT ' = lim a ' 

R -.00 R -«CO 

In R/a 
Sa In R/a 

(IV.24) 

Equation (IV.24) shows the relationship between the temperature 

differences of the modeled plume and the natural plume. In the model. 
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a' is 1.27 cm, ' is about 110° C, AT is about 2° C, and, assuming 

that S is 10~^, a is about 204.54 m. This means that our model is 

a simulation of a large sized thermal plume. 
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V. EXPERIMENTA-L SET UP AND PROCEDURE 

V.l. The Set Up 

The model used in this experiment consisted of four principal 

parts: the supporting structure, the laser head and the receiver, 

the optical apparatus and the equipment designed to produce the simu­

lated atmospheric turbulence. 

The experimental set up was situated on a wooden surface supported 

by steel legs imbedded in solid concrete blocks. The entire structure 

was enclosed in styro foam paneling to prevent the outside air from 

interfering with the atmosphere within the path of the laser beam. 

The concrete blocks were intended to stabilize the whole structure. 

Figure 5.1 is the photograph of the experimental set up. 

The laser, used in this experiment as a source of electromagnetic 

waves, is a Spectra Physics Model 120 Vielium-neon gas laser. This 

laser is capable of producing an output of 5 mW at a wavelength of 

6328 R; which is visible as a red-colored beam. The laser is operated 

in the TEM^^ mode in order to produce a uniform-phase wave front. 

The receiver used to detect the energy of the laser beam consists 

of a solid-state photodiode detector and a preamplifier. The photo-

diode is the SDG-IOOA. The signal detected by the diode is then 

amplified by a dc preamplifier. A schematic diagram of the re­

ceiver circuit is shown in figure 5.2. The signal then passes to 

the preamplifier of a Sanborn chart recorder which recorded the signal 

fluctuations on a paper record. 
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Figure 5.1. The photograph of the experimental set up. 

The optical apparatus consists of two concave mirrors, a spatial 

filter, 2 beam divider; two planar mirrors, a. polarizing filter and 

a small aperture. The arrangement of the optical apparatus is shown 

in figure 5.3. 

The atmospheric turbulence generator is constructed as shown in 

figure 5.4. It consists of a hot air storage tank, a gating shutter 

and a blower. A heating element is located inside the hot air storage 

tank to heat the air in the tank. The blower is connected to the 

tank through a section of tubing to a hole in the bottom. The blower 

increases the pressure in the tank; hence speeding the air flow 

upward. An aperture which can be opened and closed by means of a 

solenoid-actuated shutter is located at the top of the tank. This 
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D = Photodiode, SDG-IOOA 

= Transistor, 2N2484 

Qg = Transistor, 2N3251 

Qg = Transistor, 2N3251 

= 10 M 

Rg = 10 M 

R^ = 200K Pot. 

R, = 10 N 
4 

R^ = 470K 

R^ = lOOK 

Figure 5.2. The schematic diagram for the receiver. 
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Figure 5.3. The arrangement of the experimental set up. 
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Hard paper tubing 

Spring 
Opening shutter 
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ji 1 

Solenoid 

Hot air storage tank 
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Figure 5.4. The thermal plume generator. 
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TTiachine is intended to be used to generate hot air bubbles or a ther­

mal plume. In order to get a good smooth upward flow of heated air, 

a one-half inch diameter hard paper tube is attached to the aperture 

on the shutter assembly. A piece of masonite with a hole for the tube 

covers the entire structure to prevent other air currents from inter­

fering with the thermal column. 

V.2. The Calibration and Testing of the Instruments 

Before the experimental procedure can be performed, the equipment 

described in section VI.1 must be checked and calibrated. For example, 

the laser must be monitored to see that during the course of the 

experiment the fluctuation of the signal is not caused by fluctuations 

of the power output of the laser itself. The receiver must be checked 

for linearity of detection and calibrated for the received signal levels. 

Finally, the thermal plume gencratoi" must be checked to make sure that 

it really produces a plume which is a good simulation of the atmos­

pheric thermal plume. 

The power level of the laser was monitored by using a Spectra 

Physics model 4013 power meter to measure the output of the laser 

at one of the divided beams. The signal was fed to the preamplifier 

of the second channel of the S"anborn recorder so that the signals 

from both the direct and the monitoring channels were recorded simul­

taneously. Figure 5.3 shows the diagram of power monitoring arrange­

ment . 
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The linearity of the receiver was checked by passing the laser 

beam through a polarization rotator capable of rotating the polari­

zation of the beam through 360 degrees. A beam chopper was placed 

in the light path after the polarization rotator to chop the laser 

beam at the rate of 900 times per second. At the receiver, a 

polarizing filter was inserted in front of the aperture so that the 

receiver would measure only the component of the polarization matching 

that of the filter. The output of the receiver then was connected 

to an ac microvoltmeter. The block diagram of the arrangement for 

the testing is shown in figure 5.5. 

r"i 

Polarizing 
S.ti 

± 

. V L.CL X. 

Polarizing 

aser M . Tn 

TJ ^ T-\ . . .  
Aperture' 

cIsicrovoltneter 

Figure 5.5. The block diagram of the receiver linearity testing 
system. 
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During the test, the polarization of the laser beam was rotated 

through 5 degree increments and the reading of the ac microvoitmeter 

was recorded, the total range of 720 degrees of rotation was covered 

in this process. The data was plotted with the meter reading versus 

the polarizing angle. A theoretical curve of the received power ver­

sus the polarizing angle was plotted on the same graph for comparison. 

2 
The theoretical curve is that generated by the equation: E^^^-sin 0 

for the range of the angles of polarization, where is the maximum 

value of the meter reading and 0 is the angle of polarization. The 

two curves are plotted as figure 5-6, from which we can see that the 

experimental curve closely resembles the theoretical curve, except 

for small deviations at the upper and lower portions of the curve. 

It is seen that the receiver operates in linear proportion to the 

incident power in the range between 10 mV to 72 mV. This characteristic 

curve limits the use of laser beam power to this linear region- This 

can be done by using a neutral filter to reduce the beam intensity. 

The Sanborn recorder was checked for linearity of its chart 

record by feeding a triangular wave from the Beckman function generator 

model 9030 into its preamplifier. The output voltage of the triangular 

wave generator was adjusted so that the swing of the recorder scyias 

stayed within the limits of the recording chart. The two channels of 

the recorder were checked simultaneously. A portion of the chart record 

is shown in figure 5.7. From the figure we can sec that the record is 

linearly related to the input voltage over almost the entire width of 
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Figure 5.6. The plot of the voltage reading versus the angle of polari­
zation compared to the theoretical plot, for the linearity 
testing of the receiver. 
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Figura 5.7. The recorded signal for the linearity testing of the 
Sanborn recorder. 
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the chart for both channels. Thus we can assume linearity of the 

recorder to a very good approximation. For added assurance, only 

the portion "L.N." of the chart shown in figure 5.7 was used in the 

experiments. 

The calibration or the chart record for the signal degradation 

in decibels was done by using a calculation from the equation 

^m _ _dB in — = F (V.l) 

X 
""*10 E. 

where E. is the instantaneous voltage and E is the maximum voltage 
X m 

when there is no disturbance, and F is the depth of the fade in 

decibels. Since the receiver and the recorder are operating in a 

linear region, the divisions on the recorder are proportional to 

the detected voltage which is, in turn, proportional to the incident 

power on the diode. The maximum swing of the recording needle is 

adjusted at 3 large divisions on the chart record. From equation 

(V.l) the calculation of the divisions of the chart record corres­

ponding to the number of decibels of signal fade detected is deter­

mined by 

D. = anti log^Q (-ïô-)-D^ (V.2) 

where D. and D are the instantaneous and maximum deviation of the 
1 m 

needle from no signal level. And F^ is the number of decibels of 
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signal fade. The deviation of the needle below the maximum is then 

equal to D - D.. Table V.l shows the fades on a chart record corres-
m i 

ponding to the number of decibels. 

Table V.l. An example of chart calibration data. 

pdB Division on chart 
below the maximum level 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

An example of the chart calibration is shown in figure 5.8. 

To ensure that the plume emerging from the generator be a close 

approximation to the natural plume, smoke was introduced into the 

tank so that its trace could be observed and photographed. Several 

schlieren pictures were taken for study. 

0.617 

1.108 

1.497 

1.806 

2.052 

2.247 

2.402 

2.525 

2 .622  

2.703 
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Figure 5,8. The calibrated chart, in decibels. 

Figure 5.9 is a photograph of the smoke tracing of a simulated 

thermal plume. The warm air rises in the form of a column before it 

Figure 5.9. Trace of the generated plume showing a close resemblance 
to an atmospheric plume. 
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begins to break up into turbulence. From the picture we can see that 

the flow is almost laminar; that is, the streamlines are almost parallel 

to each other. The twisting of some streamlines may be due to small 

disturbances of the air surrounding the plume. Figure 5.10 shows the 

perturbed flow when a horizontal wind blows from the left. We can 

see the eddies of the flow quite clearly. From the picture we can state 

that the plume does not break up and lose its identity; but, still 

flows although with more turbulence evident. Figure 5.11 shows the 

plume with a small tilt vrtien the wind blows with less strength than 

in figure 5.10, We can see that the plume, after bending a little, 

continues to flow upward with some eddies forming to the right side 

of the plume. The upper portion of the plume has become fully occupied 

by eddies. From these photographs, we can see that the generated plume 

closely approximates the atmospheric thermal plume ; it rises up in the 

fcrrr. cf a ==l=:n and its flov is quite uniform. 

V.3. The Experimental Procedure 

After all the instruments were tested and calibrated so that their 

operational characteristics met the necessary requirements, the experi­

ment was performed by arranging the instruments as shown in figure 5.3. 

As shown in the figure, the laser beam was divided into two beams by 

a beam splitter, one beam was expanded by a spatial filter and used as 

a light source for the schlieren system. The other beam was divided 

again by another beam splitter into two beams, one passed through a 
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Figure 5.10. Trace of generated plume, showing the effect of a 
horizontal wind from the left. 

Figure 5.11. Trace of the generated plume, showing the tilting effect 
by horizontal wind at low speed. 
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small aperture to the receiver while the other one passed to the detector 

of the power meter used to monitor the output power of the laser. 

The thermal plume generator, as shown in figure 5.4, was located 

in the middle of the path between the small aperture and the receiver. 

It was leveled so that its outlet, one end of.the hard paper tube, was 

just above the level of the hardboard cover and projected into the 

schlieren field only about 0.5 cm. Figure 5.12 is a side-view diagram 

of the arrangement to show the level of the different instruments. 

schlieren field 

receiver laser 

to 
recorder 

plume generator 

(side-view) 

Figure 5.12. The location of the thermal plume generator. 

During the experiment, the outlet for the warm air was left open 

all the time to produce a column or plume of heated air. The blower 

was not turned on, since it tended to produce turbulent air flow 

instead of the uniform flow required. The heater was turned on and 

allowed to heat the air in the tank. The temperature of the air in 

the tank was monitored by a Simpson model 388 thermocouple thermometer. 
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The warm air was then allowed to flow freely out of the chimney 

and into the schlieren field. 

The adjustment of the schlieren system was a very important and 

difficult process. The beam passing through the spatial filter must 

be adjusted so that it is free from interference patterns and expanded 

to the proper size. The spatial filter, which is composed of a 

microscope objective lense and a pinhole, must be selected so that 

it produces an expansion of the beam to the size of the concave mirror. 

This is to prevent the loss of beam energy resulting from too much 

expansion, yet allowing the largest schlieren field possible. We 

chose a lOX microscope objective and a 25p, diameter pinhole as com­

ponents of the spatial filter. This combination delivered a very 

clean beam expanded to the proper size to the first concave mirror 

of the schlieren system; which was placed at the distance equal to 

its focal length from the spatial filter (60 inches). The first 

concave mirror then was adjusted to reflect the beam, which was 

collimated at this point, to the second mirror. The beam must pass 

through the test section as shown in figure 5.3. The beam then 

was reflected out of the box by a plane mirror to a screen or a 

camera. At the focus of the second mirror a knife edge was used 

to block a part of light beam to increase the sensitivity of the 

system to changes in the density of the air in the test field. The 

knife edge used in this experiment was a razor blade edge. By 

means of a precision translator, the knife edge could be moved in 

the horizontal direction perpendicular to the axis of the beam which 
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was reflected from the second concave mirror. The knife edge was moved 

into the path of the beam to block a portion of it, as shown in figure 

5.3. In this experiment several positions of the knife edge were 

tried, and it was found that the most suitable position covered about 

1/10 of the diameter of the beam. 

Taking the schlieren photographs of the test field was different 

from the other instances reported in the literature [23, 24, 25], since 

most of these recommended a large film format type of camera. This 

type of camera would be very convenient to use with this experiment, 

since its plate holder could be moved to a proper distance from the 

lens so that a suitable size of picture coulu be taken. In our 

experiment we need a camera with a shutter speed of not less than 

1/500 second. This limitation was found experimentally by taking a 

series of schlieren photographs at different shutter speeds. The 

best picture, in ternis of exposure and stopping action, was the pic­

ture that was taken with a shutter speed of (l/500)s. Since a 

large format camera with high speed shutter is very hard to find 

on this campus, we decided to use an available single lens reflex 

Asahi Pentax model SV camera for photographing the schlieren field. 

The camera was set on a tripod and an air-pressure-operated cable 

release was used to trigger the camera shutter. The first set of 

the pictures were taken with a 55 ram focal length lens on the camera, 

placing the lens just behind the knife edge as was done by other 

authors [23, 24, 25]. The resulting pictures were too small. Another 

set of pictures taken with the lens removed; that is, by letting the 
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light beam fall directly upon the plane of the photographic plate. The 

size of the picture could be adjusted by moving the camera away from, 

the focal point of the concave mirror to a proper distance as deter­

mined by looking through the view-finder of the camera. After the 

camera was properly positioned, the film was loaded, the shutter speed 

set, and the shutter cocked so that it was ready to take a picture at 

the precise moment of signal fade. 

At the Sanborn recorder, the output of the receiver was connected 

to the input of the first channel of the preamplifier, the attenuator 

and the sensitivity were adjusted so that the total swing of the stylus, 

from beam on to beam off, was three large divisions of the chart record. 

While the beam was on, the centering controls were adjusted so that 

the needle rested on the line of the second large division of the chart 

record from the top of the chart. This was selected to be the 0 dB 

level on the chart. The second channel of the preamplifier was fed 

with the signal from the power meter which monitored the power of the 

laser beam. The attenuator and sensitivity were adjusted so that the 

noise from unknown sources in the building which was picked up by the 

line was suppressed. The stylus then was adjusted to rest on the line 

of the third large divisiou of the chart record, while the beam was on. 

When the experiment was performed, the recorder and the plume 

generator were operating, the signal level of the first channel was 

visually monitored, and the shutter release was readied to be actuated. 

When the stylus of the recorder indicated a low signal level, the 

shutter was released at once and then reset for another picture. The 
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experiment continued until the camera ran out of film (about 20 expo­

sures). Approximately 15 rolls of film were exposed during the experi­

ment. Some of the better pictures are shown in this report. 

At the outset of the experiment it became apparent that the plume 

did not produce significant low level fades, but later experiments 

determined that the introduction of a horizontal wind to move the plume 

across the testing beam produced considerable low level fading of the 

signal. The equipment used to produce the horizontal wind consisted 

of a small blower placed about 6 feet from the thermal plume with a 

wooden shutter to block or release the wind into the test area at con­

venient times. 

After a series of narrow beam experiments were performed the test 

beam was expanded by replacing the small aperture with a lens. The 

same procedure of experimentation was run, but no low level fading was 

cVlucHu. 
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VI. RESULTS 

The results of the experiment are shown as signal records and 

schlieren pictures in figures 6.1 through 6.8. The signal records 

are those which show low level fades, and the pictures are the cor­

responding schlieren pictures at the moment of fading. There are 

several records in which the amplitude fluctuations are small. These 

are not shown here. Figure 6.1 shows the plume rising with a very 

little disturbance. It exhibits a little tilt and its boundary cuts 

through the path of the test beam. The density gradient of the air 

parcel in the plume and the outside air produced a refraction of the 

beam; thus causing the signal level at the receiver to fluctuate. 

The recorded signal on the Sanborn chart recorder is shown below 

the schlieren picture in the same figure. The fading of the signal 

is about 2.0 dB at the moment of taking the picture at the arrow, 

while another fade of about 5 dB is recorded just a few seconds 

behind it. The time scale is shown in the lower part of the chart 

with each division equal to a one second interval. 

Figure 6.2 shows the thermal plume model being blown by the 

horizontal wind froni die right. This time the wind was strong 

enough to cause the column of the plume to break up into many eddies. 

Since the eddies consist of warm air from the plume mixing with the 

outside air, the density gradient of the plume is quite sharp and 

caused the fading of the signal as shown in the signal record below 

the picture. Figure 6.3 is another schlieren picture taken at the 
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A schlierer. photograph of the modeled plume and a recorded 
signal, showing the effect of the plume in vertical position 

in the oath of a radio link. 
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Figure 6.2. A schlieren photograph of a thermal plume and the recorded 
signal, showing the plume being blown from the right. 
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moment of fading, with its signal record shown below it. This figure 

is the same as figure 6.2; that is, the plume was affected by a hori­

zontal wind shear. Figure 6.4 shows the plums being blown by a low 

velocity wind. The horizontal velocity vector did not create any 

vorticity at the boundary of the plume; it just caused the plume to 

tilt. It is evident that only the top portion became turbulent. 

The signal record is shown below the schlieren photograph. Notice 

that the zero level of fading is at the third large division of the 

chart record. 

Figure 6.5 is another schlieren photograph of the model.plume 

tilting a little to the left and causing a fading of the signal as 

shown on the chart record below the schlieren photograph. The fade 

level at the arrow indicating the moment when the photograph was 

taken is about 2 dB. In this instance, the effect of the plume 

Is to produce a set of repetitive fast fades combining into a slower 

fade. Figure 6.6 shows a plume being broken up at the top portion 

by the fluctuation of a horizontal wind. The portion of the plume 

in the neighborhood of the path of the test beam contains some 

eddies, and the passage of these eddies across the beam cause the 

fast fading of the signal as shovn in the chart record below the 

photograph. The fade level at the point of taking this photograph 

is about 1 dB which is small. Figure 6.7 shows a modeled plume 

with its top portion being broken into eddies, but with fewer eddies 

than in the case of figure 6.6. Its fading characteristic, shown 

below the photograph, is different from that of figure 6.6. In this 
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figure 6.3. A schlieren photograph of a modeled plume signal and 
its fading signal below. 



www.manaraa.com

47 

Figure 6.4. A schlieren photograph of a plume being blown by a hori 
zontal wind at low speed and its recorded signal. 
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Figure 6.5. A schlieren photograph of a thermal plume tilted from the 
right passing the test beam, and its recorded signal. 
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Figure 6.6. A schlifcren photograph of a plume being broken up at the 
top portion and fading characteristic below. 
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^ I r^: 

Figure 6.7. A schlieren photograph of a modeled plume with top portion 
îiisncâ its fsdin^ cliiâir£ict6xi.stic • 
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Figure 6.8. A schlieren photograph of a modeled pluse with a straight 
up position and its fading characteristic. 
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figure, the fade level at the time of the taking of the photograph 

consists of several fast fades combined into a set of slower fades 

as in figure 6.5. The fade level is about 2 d3 at that point. 

Figure 6.8 is another schlieren photograph of the model plume in a 

straight-up position. Its fading characteristic is similar to that 

of figures 6.1, 6.2 and 6.3; it is a slow fade with very small number 

of fast fades superimposed. The level of fade in this case is about 

1.8 dB, 
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VII. CONCLUSION 

The results of this experimental investigation demonstrated the 

feasibility of the scaling technique for the simulation of the effects 

of a thermal plume on a line-of-sight radio link. It also shows the 

possibility of applying techniques similar to those used in this in­

vestigation to study other atmospheric phenomena which, at least 

theoretically, are supposed to have some effect over the line-of-

sight radio wave propagation process. 

From the experiment, the deepest level of signal fade is about 

5 dB, this rarely occurred. The signal fade level of about 1 to 2 dB 

occurred in the majority of the cases. The fading of the signal 

strength due to the effect of a thermal plume was never such that it 

could be classified as a deep fading (> 10 dB) mechanism. However, a 

deep fade may occur on a radio link by the multiple effects due to 

more than one thermal plume. 

It should be noted that three distinct fading characteristics were 

obtained from this experiment. One type of fading is the fast fading 

as indicated at the beginning of signal records in figures 6.1, 6.3 

and 5.6. This type cf fading may be caused by the moving of a number 

of small sized inhomogeneities of the air parcel across the beam with 

relatively high speed. The level of signal fade is quite low for this 

type of fading (approximately 2 dB). 

A second type of fading is the one which begins with a slow de­

scending of the signal level to a fade level of about 1 to 2 dB and then 
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suddenly exhibits a fast fading characteristic at the lower signal level. 

Examples of this effect are seen in the later portion of the signal 

records of figures 6.1, 6.4, 6.5 and 6.7. This type of fading may be 

caused by a process wherein the boundary of the plume moves slowly 

through the beam followed by a number of thermally inhomogeneous air 

parcels or possibly an irregular surface plume moves past. After that 

the boundary moves back into the beam again. This type of fading pro­

duces a deeper fade level than the first one. From the experiment, 

the lowest fade level is about 5 dB in figure 6.1 and about 1 to 2 dB 

in the majority of cases where this type of fading was evident. 

The third type of fading is the slow fade which begins with a 

lowering of signal slowly to the fade level of about 1 to 2 dB and 

then returning to its normal level. The fading characteristic is 

almost like an inverted triat^le, as shown in figures 6.1, 6.2, 6.3 

and 6.8. This type of fading may be caused by the moving of a sinooth 

boundary of a plume into the beam and refracting beam away from 

the receiver. It is possible that this type of fading combines with 

the first type at the tip of the inverted triangle to result in the 

second type of fading; which in some cases can be a severe one. 

The experiment using the broad beam cross section did not result 

in any evidence of severe fading. The small amplitude fluctuations 

which were observed are theoretically caused by the combination of 

the out of phase components of the signal at the receiver. As in the 

case of narrow beam propagation, the multiple occurrence of the thermal 
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plume is possible, thus a lower level of signal can be expected at the 

receiver in the real world. 

From the results of the two types of beam propagation experiments, 

another conclusion can be drawn. This is, the main effect of the ther­

mal plume is to refract or deflect the narrow beam away from the line-

of-sight path. This conclusion supports the report made by Waterman, 

when he performed a swinging beam propagation experiment. He stated 

that there must be some kind of scattering volume, refracting layer 

or a wave-like moving medium between the transmitter and the receiver 

[26]. The thermal plume or plumes may be the cause of the refracting 

medium he mentioned. 
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X. APPENDIX: THEORY OF THE SCHLIEREN SYSTEM 

The method for measuring or visualizing the density field of a 

transparent fluid depends almost entirely on the effects of the fluid 

density on some form of electromagnetic radiation. These methods may 

be classified as those which depend on the refractive index (optical 

method), on absorption, or on emission. Of those, the optical method 

is by far the best since it does not interfere with the gas being 

measured [23]. The three principal optical methods are: achlieren. 

shadowgraph, and interferometer. All depend on the fact that the 

speed of light varies with the density of the medium through which 

it passes. The index of refraction n is the ratio of the speed of 

light in any medium to speed of light in vacuum. Stated mathematically, 

The refractive index is a function of density for a given substance 

and a fixed wavelength of light. That is : 

V 
o 

(A.l) n = 
V 

n = n( p )  (A. 2) 

To a very good approximation 

n =• 1 + p 
Po 

(A. 3) 
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where is the fluid density at standard conditions, and p is a constant 

for each gas. For air at 0 8, at pressure of 760 mm. of mercury with 

light of wavelength 5893 X, P is equal to 0.000291. The variation of 

fi with wavelength is very small. 

The effect of the varying density of the fluid is a verying index 

of refraction. Light travelling through it will generally follow a 

curved path. The curvature is in the direction of increasing density. 

In figure A.l, let the density increase in the positive Y direction. 

This figure depicts light rays passing through a fluid having a den­

sity gradient. The lines marked w^ are the wave fronts and the lines 

marked r^, which are orthogonal to the w^ lines, are the ray paths. 

Figure A.2 shows the detail of the tilting of the wave fronts. 

For a small time interval T when the wave front progresses from posi­

tion w^ to w^, we have 

QC 
T = -^ (A.4) 

where d§ is the incremental distance in the direction of the ray, v 

is the speed of the light in the medium, and at (0,0) coordinates-

Since the density of the fluid is increasing in the Y direction, the 

speed of the light is greater along r^ than along r^. Let the 

difference in speeds be dv. The tilting of the wave front will be 

Tldvl 
d(6 = (A.5) 

dn 
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y 

lines of p 

Figure A.l. The light rays passing through a fluid with density gradient 
in Y direction. 

I 

Figure A.2. Details of the tilting of a wave front when the light rays 
pass through a fluid with density gradient in the Y direction. 
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where dr] is the incremental distance in the direction perpendicular to 

the ray, r^; and 0 is the tilting angle. 

Since the ray turns through the same angle, the curvature is 

R " % (A.6) 

(A. 7) 1 . 1 dv 
R V dTl 

1 1 dn'i 
R nldTil • 

Figure A.3 shows the angular deflection of the ray after it tra­

verses the flow; and, if we let be an angular deflection in the Y 

direction, then 

% . = r d# (A.9) 

v^ere the integration is taken along the ray. 

For small deflection, the density along the curved ray is nearly 

the same as along the nearby path, Y = y^. Thus 

f i dx (A. 10) 
0 

,1 dn. 

V -To " ̂  " 
(A. 11) 
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y 

Test section 

Figure A.3. The deflection of a ray after traversing through the 
test section. 
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where L is the length of the test section. The gradient in the Z-

direction will cause a curvature of the ray path along the Z-coordinate. 

For simplicity, we will discuss the Y-component curvature only, since 

the result can be applied for both directions. 

For a plane flow,' the integral gives (asriming n - 1) 

^ ».i2) 

The above relation shows that, for plane flow, the deflection of 

the emerging ray is proportional to the density gradient in the fluid. 

The basic principle of the schlieren system is to intercept the 

deflected light, or the undeflected light, before - reaches a viewing 

screen or the photographic plate, so that part of the source image on 

the screen becomes darker or brighter. In our case we prefer to block 

part of the undeflected beam, because our system starts with an unper­

turbed schlieren field which does not deflect the beam, thus making 

it easier to adjust the position of the light blocking screen. The 

opaque screen used to intercept the beam is an ordinary straight edge 

or knife edge. 

Figure A,4 shows one of the possible basic arrangements of the 

schlieren system [24]. A beam of parallel, monochromatic light is 

obtained by passing the light source through a lens and focused 

on the slit . The light passing is focused on the knife edge 
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Figure A.4. A basic schlieren system (after J. W. Beams). 
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Sg, which is in the plane of the image of S^, by a large diameter lens, 

called a schlieren lens. The knife edge is moved into the beam so 

that only a portion "a" of light beam is left unobstructed. In the 

absence of a disturbance "D" in the beam, each point of the photographic 

plate "p" received uniform illumination intensity "I", which propor­

tional to the width "a" of the light beam allowed to pass by the knife 

edge . Once the disturbance is introduced, the deflection suffered 

by the rays will induce a shift in the source image formed by this 

light in the plane of S^. The intensity of illumination at the corres­

ponding point on the photographic plate will now have changed by an 

amount "^1" which is proportional to the component of the shift "ûa" 

normal to the knife edge. Thus, the contrast on the viewing screen 

will relate to the deflection of rays as [25] 

^ ̂  - (A. 14) 

By geometrical optics Aa is equal to f^tang, where f^ is the focal 

length of the second lens of figure A.4. 

At the viewing screen the local relative brightness or contrast 

becomes a function of x and y [23J, 

T f^tane 
Y " C(x,y) = . (A. 15) 

By the assumption that we are dealing with a planar flow, the 

increase or decrease of illumination at the screen is proportional to 
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the density gradient in the flow. Thus, if we replace the screen with 

a photographic plate and take a picture of the illuminated flow, we 

can estimate the gradient of the fluid in the flow. 

The arrangement of the schlieren system using lenses as shown in 

figure A,4 requires high quality, large diameter, long focal-length 

lenses [27]. The lenses used must be free of chromatic and spherical 

aberrations. The large diameter is required because the cross section 

of the disturbance can be large, and the long focal length is necessary 

in order to gat the requisite precision and image size. 

In experiments requiring that large regions of disturbance be 

investigated, the necessarily large, high quality lenses become quite 

expensive. So the concave mirror has been used in experiments of this 

type. The high optical quality, long focal length and large diameter 

requirements can be met by a mirror system with much less expense. 

Figure A.5 shows the arrangement of a schlieren system using two 

concave mirrors. These mirrors should be grounded to a surface accu­

racy of better than one tenth of a wavelength of the source. The 

source is placed at the focal plane of the first mirror while the 

two mirrors are separated by a distance suitable for the encompassing 

cf the region of turbulence. The knife edge is positioned in the 

focal plane of the second mirror. 

From equations (A.13) and (A.15), the fractional change of the 

illumination of the screen is given by 

¥ * "T 
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source 

mirror I mirror II 

knife ^ 
edge 

screen 

Figure A.5. The two mirrors schlieren system arrangement. 

The light increase is then captured on a photographic plate and the 

plate then processed with time and temperature control such that the 

density of negative is a linear function of the intensity of light. 

Then the refractive index gradients can be calculated [24]. 

In case of nonplanar flow, such as the flow of air in the boun­

dary of the thermal plume the behavior of the flow can be observed 

as outlined in the following analysis- Assume that the hot air column 

is cylindrical in shape with a circular cross section and having a 

homogeneous medium inside the boundary whose refractive index is less 

than that of the air surrounding it. Let the radius of the plume be 

R and i and r be the angles of incidence and refraction respectively-
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Consider one of the rays incident on the surface of the plume. Since 

the refractive index of air inside the plume is less than that of the 

air outside, the ray will be deviated upward as shown in figure A.6. 

Applying Snell's law we have 

i&7 • c"h 

where ^n^ is the refractive index of air inside (hot) with respect to 

the air outside (cold). Let g be the angular deviation from the ori­

ginal ray direction, then we have 

e = 2(r - i) (A.18) 

and 

i = sin"^(h/R) (A.19) 

Figure A.6. The geometrical optic of a light ray passing through the 
thermal plume. 
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where h is the distance from the center of the boundary to the point 

where the ray strikes the surface. Substituting into Equation (A.18) 

we have 

e = 2(sin'^ - sin"^ |) (A.20) 
c n 

As h decreases, the angles become small, then 

e = 2(h - 1] (A.21) 

From the above equation, (A,21), we see that g is proportional to the 

distance h as h tends to be zero. That is the light rays seem to emerge 

from the same point as h approaches zero. For points far from the 

axis, h/R approaches unity, and h/^n^R > 1. From equation (A.20), 

term sin ^ h/^n^R has its last real value, that is tt/2 when h * R x ̂ n^. 

For h > R X ^n^, e becomes imaginary. This means that the rays will 

be reflected when they strike the boundary surface. 

If this hot air column were put in the test section of the schlieren 

system and a knife edge used to block some part of the beam, the rela­

tive increasing of light or contrast on the screen is 

^ =-^tan[2(sin ^ h/^n^ *R) - sin ^(h/R)] (A.22) 

where h is less than R but still large. When h approaches zero the 

relative light increase becomes 
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= — tan[2(h/R)(l/ n, - 1)] 
la c n 

(A.23) 

where is the change in illumination, I is the illumination when 

there is no deviation, is the focal length of the second mirror, 

a is the portion of light that passes through the screen, is the 

refractive index of hot air with respect to the surrounding air. 

From equations (A.22) and (A.23) we can see that the term fg/a 

is a constant for each knife edge position; thus, it is called a 

sensitivity factor which defined as the fractional increase (or de­

crease) of light deflection obtained at the knife edge for unit 

angular deflection of the ray at the test section. Its value varies 

inversely with the amount of light passed (or blocked). 

In figure A.7, which shows the curve of relative brightness at 

the screen, the Y-axis represents the value of h, and the X-axis 

T-ortT-oc:0r»^c ^ h g ^'5. lU — t "I * r\n nr» ÇVto 

origin corresponding to the center of the column. At center and 

close to it where h is small, the illumination is I since fewer 

light rays are deviated away from their original path. When the 

value of h increased, the relative light change Al/I becomes tangent 

function (equation (A.23)). The approximation of sin 6=9 fails 

when 9 is about 0.1 degree [28], or when h/R = .00175. Then, when 

h reaches value of .00175R the relative change in illumination Al/I 

becomes a more complicated function. Since the deviation of a light 

ray from any point in the schlieren field corresponds to a change 
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in illumination by the source of that point on the screen, every point 

of the image of the source on the screen will have a relative brightness 

of 

- -^tan[2(^) " 1)] (A.24) 

= — - —tan[2(sin ^ - sin ^ ̂ )] (A.25) 
c n 

A curve representing the relative brightness on the screen for the case 

of a colum.i of heated air in the schlieren field is shown in figure A.7. 
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Figure A.7. The relative brightness on the screen due to the deflection 
of light after passing through a hot air column. 
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